AUTHOR	Golden, Nancy; Lane, Marilyn
TITLE	A Seven-Step Process To Align Curriculum with Oregon State Content standards.
INSTITUTION	Oregon School Study Council, Eugene.
ISSN	ISSN-0095-6694
PUB DATE	1998-00-00
NOTE	43 p .
AVAILABLE FROM	Oregon School Study Council, 217 Education Building, 1571 Alder Street, College of Education, 1215 University of Oregon, Eugene, OR 97403-1215 (\$15, nonmember; \$10, member).
PUB TYPE	```Collected Works - Serials (022) -- Guides - Non-Classroom (055)```
JOURNAL CIT	OSSC Bulletin; v42 n1 Fall 1998
EDRS PRICE	MF01/PC02 Plus Postage.
DESCRIPTORS	Academic Standards; Change Strategies; Curriculum Design; *Curriculum Development; Educational Change; Elementary Education; Higher Education; Instructional Materials; *State Standards
IDENTIFIERS	*Curriculum Standards; University of Oregon

ABSTRACT

The University of Oregon (UO) and Captain Robert Gray Elementary School formed a partnership where uo students used the elementary school as a case study for curriculum research. This document gives an overview of the 7 -step process the students used to align the school's curriculum with Oregon's content and performance standards. The text opens with what curriculum aligners need to get started and provides information on the content standards timeline, the Oregon statewide assessment system, scoring guides, and the state-test schedule. The booklet then outlines the step-by-step process of curriculum alignment. These steps are: (1) "collect your school's Oregon statewide assessment data"; (2) "chart your school's assessment data by content-standard strand"; (3) analyze the data; (4) write a school-improvement goal and develop activities to carry out that goal based on analysis of the data; (5) develop content-standard strand booklets for each content-standard strand; (6) map content-standard strand by month; and (7) align textbook and other teacher resources using a month-by-month curriculum map. After teachers have completed the process, they can begin to compare their curriculum maps with those of other teachers. The activity should occur across grade levels and even across school levels. A statistics and probability chart and curriculum mapping form are included. (RJM)

[^0]
A Seven-Step Process to Align Curriculum with Oregon State Content Standards

OSSCBulletin

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

OREGONSCHOOLSTUDY COUNCIL VOLUME 42 - NUMBER 1 •FALL 1998
U.S. DEPARTMENT OF EDUCATION Office of Educational Resear EDUCATIONAL RESOURCES INFORMATION Chis CENTER (ERIC)
© This document has been reproduced as received from the person or organization originating it.

- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent

A Seven-Step Process to Align Curriculum with Oregon State Content Standards

Nancy Golden
Marilyn Lane

© 1998 University of Oregon
ISSN 0095-6694

Nonmember price: $\$ 15$

Member price: $\$ 10$

Discọunt 10 percent for 10-24 copies and 20 percent for 25 or more copies

OSSC Staff
Robert D. Stalick Executive Director
Shiobion Underwood Graduate Research Assistańt
Bobbie Smith
Membership Chair
Design of Text Pages
Brenda Kameenui
Technical Editor
OSSC Advisory Board
Bart McElroy, Board Member
Salem/Keizer School District

Barbara Rommel, Superintenident David Douglas School District

Elaine Hopson, Superintendent Tillamook School District

Phil McCullum
Assistant Superintendent
South Lane School District
Robert D. Stalick, Executive Director Oregon School Study Council

Paul Goldman, Associate Professor
Department of Educational Leadership, Technology, and Administration College of Education
University of Oregon
Joanne Flint
Instruction and Field Services
Oregon Department of Education

Cliff Kuhlman

Oregon School Boards Association

Oregon School Study Council
217. Education Building 1571 Alder Street College of Education 1215 University of Oregon
Eugene OR 97403-1215

(541) 346-1397

Fax (541) 346-5818
The University of Oregon is an equalopportunity, affirmative-action institution committed to cultural diversity and compliance with the Americans with Disabilities Act.

This publication will be made available in accessible format upon request.
Accommodations for people with disabilities will be provided if requested in advance.

Annual subscriptions to the Oregon School Study Council include four issues of the OSSC Bulletin and four issues of the OSSCReport. Domestic subscriptions are $\$ 75$ per year; foreign subscriptions are $\$ 100$ per year. Back issues of OSSC Bulletins are available. Contact the OSSC office for a listing of available issues.

Abstract

A key feature of the Oregon Educational Act for the Twenty-first Century is new; high state standards. These standards tell us what our students need to know and be able to do. In order to assure that our students reach. these standards, we must teach to the standards. This requires aligning the curriculum to the standards. In this publication readers are given an easy seven-step process for this alignment.
In addition, readers will learn about a unique university and school district partnership in this publication. The students in the University of Oregon curriculum foundation course aligned the math curriculum for Captain Robert Gray Elementary School in Astoria, Oregon. This gave the university students a live case to use in their class and gave Gray Elementary the tremendous assistance of a skillfully aligned math curriculum. Partnerships such as this one are critical in the age of diminishing resources.

A Seven-Step Process to Align Curriculum with Oregon State Content Standards

Contents

Section 1: A Tribute to School-University Partnerships 6
Section 2: Learning to Teach in Standards-Based System 6
What You Must Have Before You Get Started 6
Content Standards Timeline 7
What You Need to Know Before You Get Started 8
Oregon Statewide Assessment System 8
Scoring Guides 8
Getting Started 8
State Test Schedule 8
Mathematics Problem Solving Official Scoring Guide 9
Section 3: A Step-by-Step Process of Curriculum Alignment 10
Step 1. Collect Your School's Oregon Statewide Assessment Data 10
Step 2. Chart Your School's Assessment Data by Content Standard Strand 10
Distribution of Students by Performance Standards in Mathematics 11
Figure 1. Fifth-Grade Math Performance by Content Standard Strand - 1997 12
Figure 2. Gray Elementary School Fifth Grade Total Math Scores - 1997. 12
Step 3. Analyze the Data 13
Step 4. Write a School-Improvement Goal and Develop Activities to Carry Out That Goal Based on Analysis of the Data 13

A Seven-Step Process to Align Curriculum with Oregon State Content Standards

Step 5. Develop Content Standard Strand Booklets for Each ContentStandärd Strand 13
Goal Sheet 14
Mathematics Calculations and Estimations 'Chart 15
Step 6. Map Content Standard Strand by Month 18
Step 7. Align Textbook and Other Teaching Resources Using the Month-by-Month Curriculum Map Created in Step 6 18
Summary of Seven-Step Process to Align Curriculum with Oregon State Content Standards 18
Exhibit 1. Fourth- and Fifth-Grade-Level Skills - Statistics and Probability 19
Statistics and Probability Chart 20
Curriculum Mapping/Material Form 23
Curriculum Map by Month 25
Appendix 27

A Seven-Step Process to Align Curriculum with Oregon State Content Standards

Section 1: A Tribute to School-University Partnerships

The University of Oregon and Captain Robert Gray Elementary 'School formed a partnership as UO students enrolled in a summer session curriculum foundations class used Gray. Elementary School in Astoria, Oregon as a live case study. The class learned a seven-step process to align curriculum with Oregon's content and performance standards. The students used Gray Elementary School's 1997 Oregon statewide assessment data and the school's math textbooks to learn the process and align Gray's curriculum in two math domains. Upon examining the work completed over the summer at their firstinservice, Gray Elementary School teacherṣ delighted in having much of their curriculum alignment work completed for them, allowing Gray Elementary's teachers to spend more time on instructional planining.

In the age of diminishing resources for public schools, having knowledgeable college students help align curriculum with Oregor State content standards is a great service. The work the college students produced - analysis of statewide assessment data, skills booklets by grades, and textbooks aligned with curriculum standards by months - provided Gray Elementary teachers an articulated math curriculum in two of the math domains. Gray Elementary benefited from the students' assistance by having their test data analyzed and curriculum mapping completed for their math curriculum. The university students benefited by having a live case to study in this class. Gray Elementary will be used as an example throughout this publication to enhance understanding of the steven-step process to align curriculum of Oregon state content standards.

Section 2: Learning to Teach in StandardsBased System

Oregon is in the midst of a major shift toward a system of standards-based instruction. Since the passage of HB 2991 during the 1995 Legislative session, "the State Board of Education has adopted content standards, identifying what students should know and be able to do in six major academic areas. Benchmarks have been set within each of the content standards, specifying what subjects will be covered in the state tests at the end of grades three, five, eight, ten; and twelve" (Teaching and Learning to Standards, Oregon Department of Education, 1997). Schools across the state are beginning the process of
examining curriculum to make sure they are teaching toward benchmarks that are tested on the Oregon statewide assessment.

This bulletin describes the steps a school can take to align curriculum with Oregori content and performance standards and determine if they are teaching what is being tested. The examples focus on Gray Elementary School's 1997 math assessment data and the University of Oregon students' alignment of Gray Elementary School's math textbooks with the state content and performance standards.

The stakes are high. For the first time in Oregon;' students will have the opportunity to meet high academic standards to earn a Certificate of Initial Mastery at or near grade ten. Current Oregon statewide assessment results indicate that only 32 percent of students are meeting or exceeding the high performance standards for grade ten in math. Benchmark levels at grades three, five, and eight tell teachers howstudents are doing as they progress toward the Certificate of Initial Mastery (CIM). In 1998, 67 percent met or exceeded the standards at third grade in math. Sixty-one percent met or exceeded the standards at fifth grade in math, while 50 percent met or exceeded the standards at eighth grade in math.

As Oregon teachers and administrators, we must challenge students who meet the state performance standards to further their learning, as well as devise strategies to assist students who don't yet meet those standards.

What You Need to Have Before You Get ${ }^{\circ}$ Started

Become familiar with the content standards by reading through Teaching and Learning to Standards, 'Oregon Department of Education, 1997. Every school in the state has received at least one copy of this document. Additional copies are available from Barbara Slimak, Oregon Department of Education, (503) 3783310 ext. 485 (or e-mail barbara.slimak@staté.or.us). You also need to have your Oregon statewide assessment data presented by content strands for analyṣis.

What You Need to Know Before You Get Started

Content Standards

Content standards identify what students should know and be able to do in six major academic areas: English, math, science, social studies, the arts, and second language. Statewide assessments are being phased in. based on the content standards timeline. (See phase-in schedule on page 7.)

Oregon Statewide Assessment System

Oregon's statewide assessment system has three components that are sometimes referred to as a three-legged stool: 1) classroom work samples collected at various times throughout the student's career, 2) on-demand mathematics problemsolving assessment, and 3) multiple choice tests given at grades three, five, eight, and ten. The current testing schedule is given in the chart below.

Scoring Guides

Scoring.guides are used to help teachers assess student performance on open-ended assessments and classroom work samples. The same scoring guides are used by state scorers of the open-ended math assessment and writing. (See sample sconing guide on page 9.)

Getting Started

This is a group process to help your staff understand historical influences contributing to a standards-based system.

The following activity can be done with your entire staff at an inservice meeting. This simple activity will help illustrate many of the historical influences that have contributed to the shift from a time-based public school system to a standards-based public school system.

1. Break into groups that graduated from high school in the same decade (fifties, sixties, seventies, eighties, nineties).
2. Give each group fifteen to twenty minutes to discuss the following and record information on chart paper:

- Significant historical events. List the historical events - that occurred during your K -12 experience (national/international).
- Key educational words. List the educational words that describe how you remember your schooling years (i.e., new math, open classrooms; etc.).
- Attitude list. List the words that describe your age group's attitude about the effectiveness of your K-12 schooling.
- Issues. What are the issues, ideas, and/or events that people are most concerned about in your age group?
- Changes. What changes do these issues promote?
- Today. What words does your age group use to describe schooles today?

State Test Schedule

Students in grades 3,5, 8, and 10 in the 1998-99 school year will take state tests according to the schedule above.
1998-1999 Mathematics Problem Solving Official Scoring Guide 1998-1999

ACCURACY		Essentially Correct (no additional instruction appears necessary).		
	Conceptual Understanding Showing an understanding of the mathematical concepts related to the task (the. "what").	Processes and Strategies Choosing strategies that can work, and then carrying out the strategies chosen (the "how")"	Verification Field Test 1998-99* In addition to solving the task, reviewing. the work and defending the solution in relation to the task (the "defense") *Although the scores in this dimension will not be used for decisions about students, they will inform the field test:	Communication Showing the reasoning (the "why") behind the process, using pictures, symbols, and/or vocabulary
6	\ldots..		, $\quad \cdots \quad \because \cdot$	
5	A) The task is translated into thoroughly developed and/or complex mathematical concepts. B) The task is enhanced through connections and/or extensions to other mathematical ideas.	A) Pictures, models, diagrams, and/or symbols used to solve the task are thoroughly developed. B) Complex mathematical processes/ strategies are completed.	A). The verification is clearly identified. and thoroughly developed. B) • A different perspective, used as a defense of their solution, maye enhance the "defense."	A). The reasoning behind the process of solving the task is clearly displayed throughout and enhanced through the use of graphics and/or examples allowing the reader to move easily from one thought to another.
4	C) The task is translated into adequate mathematical concepts using relevant information and/or data from the task.	C) Pictures, models, diagrams, and/or symbols are used to solve the task. D) Reasonable mathematical processes/. strategies are completed.	C). The verification is identified, completed, and supports their solution.	B) The reasoning behind the process of solving the task is clearly displayed.
3	D) An understanding of some of the major concepts is displayed. E) Fragments of the information and/or data presented in the task are used.	E) Pictures, modeḷs, diagrams, and/or symbols may be only partially useful or used to solve the task. F) Reasonable mathematical processes/. strategies are partially completed (or partially recorded)	D) The evidence of verification is partially completed (or partially recorded) or partially effective.	C) The reasoning behind the process is partially displayed with gaps that have to be inferred.
2	F) The translation of the task is underdeveloped or sketchy. G) Assumptions and/or data may be flawed.	G) Pictures, models, diagrams, and/or symbols used may partially detract from solving the task. H) : Processes/strategies are underdeveoped.	E) The process of checking the work is underdeveloped (e.g., focusing only on their solution or its reasonableness).	D) The display of the reasoning behin'd the process is partially flawed. E) Communication explains the solution, but does not indicate a clear path to the solution.
1	H) The task is translated into inappropriate concepts or uses inappropriate informátion: I) The evidence of conceptual understanding is minimal.	I) Pictures; models, diagrams, and/or symbols conflict with their solution. J). Processes and strategies are ineffective or minimal.	F) The process of checking the work is ineffective (e.g., verification is minimal, verification strategy is inappropriate).	F) The display of the reasoning detracts from the work and may include irrelevant ideas.
NE	J) No evidence is provided.	K) Strategies are not recorded.	G). No evidence of a defense is provided.	G) The reasoning is not provided.

and Evaluation
3. Ask each group to report, beginning with high school graduates of the earliest decade. From the charts generated during the group discussions, report on this activity. This activity was conducted in the summer school curriculum foundations class at the University of Oregon.

The university students in the curriculum foundations class grouped themselves according to the decade of their graduation from high school. The students reported on significant events; keywords, attitudes, issues, and changes that occurred and how events in society affected schools. From the law and order and enforced respect of the early sixties to the political correctness of the nineties, events in society influenced schools and school curriculum. Anti war sentiment and desegregation led to inclusion practices, and the move away from the Dick and Jane basal readers translated into open classrooms in the seventies.

Economics of a strong middle class had an impact on curriculum in the sixties. The eighties and nineties found the middle class disappearing. The rich were becoming richer and the poor poorer as the nineties unfolded, leading to greater demands of accountability from the wealthy. The "laissez faire" attitude of the seventies also shifted into the accountability movement in the nineties. Neighborhood economies in the sixties melded into the global competition in the nineties, requining higher standards and yielding international comparisons of student performance.

Other trends in the nineties influenced curriculum:

- The passage of IDEA, making inclusion of students with learning or behavior problems the standard.
- Along with the changes in the economy came increased numbers of single-parent families and a change in the amount of time adults have to spend with their children:
- Peer influence, as well as the influence of the popular media,-increased; as did the number of children with few social skills and little family support.
- Teachers' abilities to focus on the academic curriculum lessened as the diversity of learners increased. At the same time, the accountability movement increased curricular expectations of schools.
Another major influence on school curricula between the sixties and the nineties has been the shift of control in funding from local to state and federal levels. This trend in Oregon is leading to standardized school budget reporting at the state level, allowing state legislators and officials to direct funds more carefully toward activities that seem to indicate greater achievement on state assessments.

Section 3: A Step-by-Step Process of Curriculum Alignment

In order to assist Oregon students in meeting state standards, we must assure that we are teaching to the standards. Curricu-
lum alignment is a process that aligns what teachers teach with the state content standards. The following chart is of our sevenstep process.

A Seven-Step Process to Augn Curricurumwith Oregon State Content Standards

Step 1: Collect your school's Oregon statewide assessment data.

Step 2: Chart your school's assessment data by content domains.
Step 3: Analyze the data:
Step 4: Write a school-improvement goal and develop activities to carry out that goal based on analysis of the data.
Step 5: Design down from each content standards strand and chart the skills.
Step 6: Map content standard strands by month.
Step 7: Align textbook and other teaching resources using the month-by-month curriculum map created in step 6.

Step 1. Collect Your School's Oregon STATEWIDE ASSESSMENT DATA

Every year the Oregon Department of Education makes public each school district and individual school's performance data on the Oregon statewide assessment. These data are available at your school or district office. An example of how the data is displayed when it arrives from the state is shown on page 11: This data is analyzed by content standard strands. This example is of fifth-grade students in Gray Elementary School.

STEP 2. CHART YOUR SCHOOL'S ÁSSESSMENT DATA BY CONTENT STANDARD STRANDS

A school's statewide assessment data will be most easily under-' stood if it is translated into chárts by content standard strands. For example, the math content standard has five strands: calculation and estimation, measurement, statistics and probability, algebraic relationships, and geometry. Breaking your test data down by domains helps you identify specific curricular areas that need strengthening (see Figure 1). A similar graph would need to be produced for the third grade students.

In addition to the chart that graphs the data by content standard strands (Figure 1), you may wish to produce a chart that compares your overall fifth-grade scores to those of the district and state. This would give you an opportunity to compare how you are doing relative to the district and state. The chart in Figure 2 is such a comparison for fifth-grade students at Gray Elementary School with the district and state. This data was also. taken from page 11.

1997 Oregon Statewide Assssment Program

DISTRIBTUTION OF STUDENTS BY PERFORMANCE STANDARDS MATHEMATICS

$\cdots \quad 15$

This graph represents the distribution of fifth-grade students at Gray Elementary in 1997 on the Oregon State Performance Standards in mathematics. Overall, 52 percent of the students met the total math performance standard. Measurement and calculation and estimations were the strongest areas of performance for these students. Sixty-one percent of these students met or exceeded the performance standard in measurement. Fifty-nine percent met or exceeded the performance standard in calculation and estimation. The lowest performance by students was in statistics and probability, where only 43 percent met or exceeded the performance standard.

Figure 1. Fifth-Grade Math Performance by Test Domains - 1997

This graph represents the overall math scores of fifth-grade students for the 1997 school year. It shows that Gray Elementary had 48 percent of students who did not . meet the standards compared to 47 percent for the district and 41 percent for the state. Gray Elementary had 45 percent who met the standards compared to 44 percent for the district and 47 percent for the state. Gray Elementary. had 7 percent of the students that exceeded the standards compared to 9 percent for the district and 12 percent for the state.

Step 3.-ANALYZE THE DATA

Schools can analyze student performance in each content standard strand within each content area. At the bottom of each chart you need to write a narrative to explain your test data. These charts typically become a part of the school's profile and improvement plan and allow teachers to identify the curricular areas of strengths and weaknesses. This helps teachers focus on areas where the students need additional instruction. (See Figure 1.) For Gray Elementary, students strongest areas are measurement and calculation and estimation. Their weakest areas are statistics/probability, algebraic relationships, and geometry: Even though we have identified areas of strength, all areas need to improve because the goal is to have all students meet or exceed standards in all six domains.

STEP 4: WRITE A SCHOOL-IMPROVEMENT GOAL and Develop Activities to Carry Out That Goal Based on Analysisi of the Datä

The form or page 14 is a framework for how to set a goal and provide activities, that will guide you in reaching the goal. A blank form is included in the appendix for your use when you write your school improvement goal. The information on page 14 is from Gray Elementary. We will explain how to complete the form using Gray Elementàry's goal sheet as an example.

Goal: Each school-improvement goal is a part of your school improvement plan that is developed by each school's site council. The general rule is that a school-improvement plan has, two to three goals. This is goal number one for Gray Elementary. The school determined that it was an appropriate goal as a result of the data analysis from Figures 1 and 2. The intact group includes students that have been at Gray Elementary for at least one year às reported by the students.

Profile Data That Supports the Implementation of the Goal: This data comes from the Oregon state assessment data that is sent to each school and district office. The information on page 11 is an example of this data: Data is included for grades three, five, and eight, which are the benchmark years, and for CIM; which is the tenth year. Once you have developed a graph of the data as in Figure 1, it is easy to interpret. In interpreting the data for Gray Elementary, it is clear that Gray has students that have not yet met the standard: in all six of the math domains (see this section on goal sheet, page 14).

Activity: The activities are strategies that you are implementing that you believe will cause you to reach your goal. At Gray Elementary the strategy is curriculum mapping' (see activity section on goal sheet).

Assigned to: Each activity must be assigned to a person(s) to assure that it will be completed. In the Gray Elementary example, activities are assigned to the math team.

Resources: Each activity will require resources like human resources, time, and materials. You must list the resources for each activity.

Timelines: The timeline section is divided into the project year and four quarters: fall, winter, spring, and summer. Some activities will take more than one year to complete, and the timeline provides a target for completion:

Evaluation: This section on the goal sheet records how a school will evaluate every activity. It is not the evaluation of the goal. State testing results the next year are the evaluation of the goal.

Person with Overall Responsibility for the Goal: This person is responsible for seeing that all activities on the goal sheet are completed and checks continualy with people assigned to each activity, to assure progress. This person provides support for those working on eachactivity and reports progress at every site council meeting.

STEP 5. Design From Each Content Standard Strand and Chart Skills

Using a process called "design down," a school looks at the content standards and benchmarks for each content standard strand. The school then specifies skills to be taught in each grade so that students can meet or exceed the performance standards. In the math area these domains are shown on the chart on pages 15-17 and include calculation and estimation, measurement, statistics and probability, aglebraic relationships, and geometry.

For example, at the third-grade benchmarks for calculation and estimation, the standards and benchmarks are shown on pages 15-17. These pages are taken directly from the documents we referred to earlier called "teaching and learning to standards." Once schools have identified the standard and benchmark, they; ask which skills should be taught at the benchmark year and all the years that preceed it. At the third,grade benchmark, schools would ask what skills need to be taught at third grade, sec̣ond grade, first grade and kindergarten.

The example below uses the third-grade benchmarks for calculation and estimation: All of the state standards for calculation and estimation arẹ on pages 15-17.

1. Stándard: Perform whole-number calculations using paper and pencil and calculators. What skills need to be taught:

- at third grade?
\because at second grade?
- at first grade?
- in kindergarten?

17
GOAL 1: By the 2000-2001 school year, the intact group of each fifth grade class at Gray Elementary School will increase their scores in all areas by 10 percent on the Oregon Statewide Math Assessment.
PROFILE DATA THAT SUPPORTS IMPLEMENTATION OF THIS GOAL: .Grade five Gray Elementary students did not yet meet standards in the six domains by the following percentages: 41 percent in calculation and estimation, 39 percent. in measurement, 57 percent in statistics/probability, 51 percent in algebraic relationships, and 52 percent in.geometry.
Tmelines

Evaluation

Completed list of skills designed
down from the content standards.
Completed curriculum map aligned with state standards.

Completed curriculum map.

1.9

Mathematics

CALCULATIONS AND estimations: Select and apply mathematical operations in a variety of contexts

Common CURRICULUM Goals	Content STANDARDS	Grade 3 Benchmark
COMPUTȦTION Read, write, and order real numbers. Demonstrate conceptual meanings for addition, subbtraction, multiplication, and division. Select and use appropriate methods and tools for computing with numbers (e.g., mental calculation, paper and pencil, calculator, computer).	Compute with whole numbers, fractions, decimals; and integers using paper and pencil, calculators, and computers.	Perform whole number calculations using paper and pencil and calcula-tors. Students will: - order first through tenth in numeric form (i.e., 1st) or word form (i.e., first): - add three-digit whole numbers with regrouping. - subtract three-digit whole numbers with regrouping. - multiply single digit numbers. - identify simple fractions with numerators and single-digit common denominators from pictorial representations.

Mathematics

Calculations and estimations (continued)

Mathematics

Calculations and estimations (continued)

2. Standard: Estimate solutions to problems and determine if the solutions are accurate and reasonable. What skills need to' be taught:

- at third grade?
- at second grade?
- at first grade?
- in kindergarten?

3. Standard: Use concepts of place value and grouping in whole number operations. What skills need to be taught:

- at third grade?
- at second grade?
- at first grade?
- in kindergarten?

What must students be taught to have the knowledge and skillsto meet the benchmark for this curriculum strand?

After this process has been completed for each grade level, teachers can assemble skill domain booklets to help:

- assess what needs to be taught at each grade level, and
- communicate to parents what students are expected to know and do in each grade:

At third, fifth, eighth and CIM/tenth benchmarks, teachers not only need to determine what skills will be taught in the grades but also between benchmarks' (e.g., grades four and five for benchmark five, or grades six and seven for benchmark eight; or nine for $\mathrm{CIM} / \mathrm{grade}$ ten benchmark). They must also make certain those skills line up with what has been taught in each preceding benchmark (e.g., kindergarten through grade three for the grade five benchmark and kindergarten through grade five for the grade eight benchmark). This work allows alignment at both grade levels and school levels and helps teachers determine if gaps exist between grades.

It is important to know where to begin when you design down from the skill domains. The place to start is with the domain that has the highest percent of students who "do not meet" the standard. Figure 1 shows that Gray Elementary would begin. with statistics and probability. Using the designing down process described above; start with the first content standard for probability, which is "determines the probability that an event will occur," and the grade five benchmark standard, which is "make predictions using experimental probability," and ask what skills need to be taught: "

- at fifth grade?
- . at fourth grade?

Exhibit 1, developed by the university students, illustrates the skills that need to be taught for the first content standard and benchmark for statistics and probability in grades four and five. It shows how teachers can display the skills they design down on a chart. The complete list of content standards for statistics and probability is on pages 20-22.

Step 6. MAP SKill Domains by Month

Orice teachers have looked at the content standards and determined what skills need to be taught at each grade level, the skills should be mapped by month. What will be taught in September? October? November? A blank curriculum map is available for teacher use in the appendix on page 28.

Step 7. Align Textbook and Other Teaching Resourceś Using the Month-by-Month Curriculum Map Created in Step 6

Teachers must choose curriculum materials to help students reach the standards. If textbooks are used, do they present all the necesary skills to recall the standard? Do supplementary teaching materials teach to the standards, or can some lessons be omitted? For what skills must teaching resources stil be located?

These questions will be answèred once teachers complete the process of aligning textbook and other teaching materials with the content standards using the month-by-month curriculum map. (See chart on pages 23-24.) A blank curriculum map/ material form is available on pages $30-31$ in the appendix.

Summary of Seven-Step Process to Align Curriculum with Oregon State Content Standards

- Step 1: Collect your school's Oregon statewide assessment data.
- Step 2: Chart your school's assessment data by content domains.
- Step 3: Analyze the data.
- Step 4: Write a school-improvement goal and develop activities to carry out that goal based on analysis of thedata.
- Step 5: Design down from each content standard strand and chart the skills.
- Step 6: Map content standard strands by month.
- Step 7: Align textbook and other teaching resources using the month-by-month curriculum map created in Step 6.

After teachérs have completed the seven-step process, they can begin to examine their curriculum maps with other teachers, looking for gaps or inconsistencies. This activity should occur across grade levels and even aćross school levels, creating an articulated curriculum, grades $\mathrm{K}-12$, focused on helping students meet and exceed the high content standards designed by the state of Oregon.

The chart on page 25 takes all of the skills that need to be taught for statistics and probability and place them by months on the curriculum map. Teachers can make a separate map for all the skills for one content standard strand but eventually must combine them into one map that shows when they, will teach all the fifth-grade berichmark skills. A blank curriculum map is provided in the appendix.

Exhibit 1. Fourth- and Fifth-Grade-Level Skills: Statistics and Probability

Content Standard Strand: Statistics and Probability - Collect, organize, display, interpret, and analyze facts, figures, and other data.

Content Standard: Determine the probability that an event will occur:

GRADE 5 Benchmark: Make predictions using experimental probability. Express probabilities using fractions, ratios, and decimals.

Students will express probabilities as fractions, ratios, ánd decimals.
Grade 5

- divide whole numbers to get decimals.
- convert fractions to decimals
- convert ratios to decimals

Benchmark Specification: Students will determine theoretical probabilities by calculating or counting the possible outcomes in a sample space. They will determine the number of these outcomes that fit the description of an event of interest and then express the probability as a fraction, decimal, or ratio.

Students will make predictions using experimental probability.

Grade 4

- add 1000 s
- recognize and write fractions
- recognize decimals using money
- use manipulatives like dice, coins, and spinners to determine probabilities

Benchmark Specification: Students will analyze exercises that include tossing one or more coins, rolling one or more dice, spinning a spinner of even or uneven divisions, drawing objects from a container with and without replacement. Students chart observed natural occurrences and interpret data from games or sports events.

Mathematics

Statistics and Probability: Collect, organize, display, interpret, and analyze facts, figures, and other data:

Mathematics

Statistics and Probabillity (continued):

Common CURRICULUM Goals	Content Standards	Grade 3 Benchmark	Grade 5 Benchmark
STATISTICS			
Display and use measures of central tendency and variability (e.g.) mean, median, mode, range, quartiles). Analyze and evaluate statistical claims and arguments for erroneous conclusions and/or distortions.	Carry out and describe experiments using measures of central tendency and variability.	Carry out simple experiments and simulations and compare the predicted and actual outcomes. NOTE: Classroom work samples only; not covered on the state multiple choice test.	Formulate and carry out simple experiments and simulations Collect and analyze data using measures of central tendency. Students will: - Determine mean, median; and mode of ten or fewer numbers where the answer is nolarger than 100 . - find one missing data piece when the mean is known.

Mathematics

Statistics And Probability (continued)

Curriculum Mapping/Material Form

																																																																																			CONTENT STANDARD STRANDS: Statistics and Probability - Collect, organize, display, interpret, and analyze facts, figures, and other data.																																																																																			

Curriculum Mapping/Material Form
Content Standard Strands: Collect, organize, display, interpret, and analyze facts, figures; and other data.

Fourth- and Fifth-Grade Math - Statistics and Probability - Curriculum Map by Month - 1998-99

Content Standard Strands: Statistics and Probability - Collect, organize, display, interpret, and analyze facts, figures, and other data.

Appendix

Oregon School Study Council
PROFILE DATA THAT SUPPORTS IMPLEMENTATION OF THIS GOAL:

Curriculum Map by Month - 1998-99

Content Standard Strands:

CONTENT STANDARD:									
Grade 5 Benchmark:									
									Materials

40
Content Standard Strands:

UNIVERSITY OF OREGON

College of Education 1215 University of Oregon Eugene OR 97403-1215

VOLUME 42 • NUMBER 1-FALL 1998

The University of Oregon is an equal-opportunity, affirmative-action institution committed to cultural diversity and compliance with the Americans with Disabilities Act. This publication will be made available in accessible formats upon request. Accommodations for people with disabilities will be provided if requested in advance.

P0898E449.

NOTICE

REPRODUCTION BASIS

This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

\square
This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

[^0]:

 * Reproductions supplied by EDRS are the best that can be made from the original document.

